SYNTHESIS OF NEW 2-OXAZOLINONES FROM N-CARBOXY α-DEHYDROAMINO ACID ANHYDRIDES Yasuchika YONEZAWA, Chung-gi SHIN, * Akira OHTSU, and Juji YOSHIMURA † Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221 †Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Midori-ku, Yokohama 227 Addition of methanol to N-carboxy α -dehydroamino acid anhydride in the presence of NBS, followed by the treatment of the resulting product with base gave a new 2-oxazolinone-4-carboxylate. Recently, our attention has been directed to the utilization of N-carboxy α -dehydroamino acid anhydride (dehydro-NCA; $\underline{1}$), prepared by the cyclization of N-benzyloxycarbonyl- α -dehydroamino acid with SOCl_2 . Of special interest are the addition reaction to $\underline{1}$ and the use of the adduct for the syntheses of peptides and heterocyclic compounds, which seem to be important to the new synthesis of various α -amino acids. Here, we will report the reaction of $\underline{1}$ with NBS in methanol, followed by the conversion of the resulting 4-methoxy-2,5-oxazolidione derivative into a new 2-oxazolinone-4-carboxylate. Treatment of an equimolar $\underline{1}$ (2 mmol) with NBS in methanol (30 ml) under cooling for 40 minutes $\underline{2}$ gave colorless crystals almost quantitatively, identified as 4-bromoalkyl-4-methoxy-2,5-oxazolidione ($\underline{2}$). The subsequent treatment of $\underline{2}$ (1.5 mmol) with an organic or inorganic base (2 mmol), such as DBU and NaOH, in methanol (30 ml) at room temperature for 5 hr gave crude substance, which was purified on a silica gel column using a mixture of benzene and ethyl acetate (3 : 1 v/v) as the eluent to give colorless crystals. Based on the spectroscopic data [IR: -O-CO- (1770-1755 cm $^{-1}$), -COOMe (1725-1715 cm $^{-1}$), C=C (1670-1630 cm $^{-1}$), NMR: δ 9.40-9.61 (NH)], satisfactory elemental analyses, and the conversion into the authentic samples, the compounds obtained above could be determined unambiguously as methyl 5-alkyl-2-oxazolinone-4-carboxylates ($\underline{3}$). The formation of $\underline{3}$ from $\underline{2}$ would be explained by the ring cleavage of $\underline{2}$ with methoxide anion and recyclization of the resulting intermediate to $\underline{3}$, accompanied by the elimination of methanol prior to or after the cyclization. Catalytic hydrogenation of $\underline{3a}$ (0.1 mmol) with 10% Pd/C (0.8 g) in methanol (60 ml) at room temperature for 20 hr gave the expected methyl 5-methyl-2-oxazolidione-4-carboxylate [$\underline{4a}$: mp 80-82 °C (lit. 3) mp 83.5-84.5 °C), yield 75%. NMR (CDCl $_3$): δ 5.00 (double q, lH, J=8.5, δ .5Hz, 5-H), 4.50 (d, lH, J=8.5Hz, 4-H)]. From the vicinal coupling constant between ring protons, 4) the compound $\underline{4a}$ was suggested to be the erythro (cis)-isomer and this was confirmed by the comparison with the specimen derived from allo-threonine and phosgen in two steps. 3) The above results in conjunction with the previously reported conversions 3,5) will be useful for the syntheses of both of erythro and threo- β -hydroxy- α -amino acids. a; $R=CH_3$, b; $R=C_2H_5$, c; $R=n-C_3H_7$, d; $R=i-C_3H_7$, e; $R=C_6H_5$ Scheme 1 Table 1. The yields, melting points, and spectroscopic data of $\underline{2}$ and $\underline{3}$ | Compd. | Yield | Mp ^{a)} OC | NMR, 6 (CDC1 ₃) -CH-Br (J _{HZ}) | Compd. | Yield ^{b)} | Mp ^{c)} | IR ^{d)} cm ⁻¹ C=C | NMR ^{e)}
8
NH | |-----------|-------|---------------------|---|-----------|---------------------|------------------|---------------------------------------|------------------------------| | <u>2a</u> | 98 | 93-94 | 4.44q (7.0) | <u>3a</u> | 70 | 143-144 | 1670 | 9.43 | | <u>2b</u> | 97 | 107-109 | 4.22dd (13.0, 2.5) | <u>3b</u> | 62 | 111-112 | 1665 | 9.50 | | <u>2c</u> | 98 | 86-87 | 4.26dd (13.0, 2.5) | <u>3c</u> | 65 | 86.5-87.0 | 1660 | 9.50 | | <u>2d</u> | 99 | 66-68 | 4.38d (12.0) | <u>3c</u> | 63 | 90.5-91.5 | 1655 | 9.40 | | <u>2e</u> | 95 | 140-141 | 5.24s | <u>3e</u> | 75 | 165-166 | 1630 | 9.61 | a) Colorless needles from n-hexane. b) Yield from $\underline{2}$ and DBU. c) Colorless needles from cyclohexane. d) Recorded in KBr. e) Measured in CDCl $_3$. ## References - 1) C. Shin, Y. Yonezawa, and J. Yoshimura, Chemistry Lett., 1981, 1635. - 2) C. Shin, Y. Sato, H. Ohmatsu, and J. Yoshimura, Bull. Chem. Soc. Jpn., 54, 1134 (1981). - 3) T. Kaneko and T. Inui, Nippon Kagaku Zasshi, 82, 1075 (1961). - 4) S. Futagawa. T. Inui, and T. Shiba, Bull. Chem. Soc. Jpn., 46, 3308 (1973). - 5) T. Inui, Nippon Kagaku Zasshi, 83, 493 (1962). (Received April 30, 1982)